UNITED STATES AIR FORCE IERA

Sensory Irritation Study in Mice: JP-4, JP-8, JP-8+100

Frederick T. Whitman

ExxonMobil Biomedical Sciences, Incorpated Laboratory Operations 1545 Route 22 East, P. O. Box 971 Annadale, NJ 08801

John P. Hinz

Approved for Public Release Distribution Unlimited

August 2001

20020118 253

Approved for public release;

distribution is unlimited.

Air Force Institute for Environment, Safety and Occupational Health Risk Analysis Risk Analysis Directorate Risk Assessment Division 2513 Kennedy Circle Brooks Air Force Base TX 78235-5116

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Government agencies and their contractors registered with Defense Technical Information Center (DTIC) should direct requests for copies to: Defense Technical Information Center, 8725 John J. Kingman Rd., STE 0944, Ft. Belvoir, VA 22060-6218.

Non-Government agencies may purchase copies of this report from: National Technical Information Services (NTIS), 5285 Port Royal Road, Springfield, VA 22161-2103.

John P. Hinz

Chief Toxicologist, RSRE

Kenneth L. Cox, Lt Col. USAF, MC, SFS

Kenneth L. Cox

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 22		D2, and to the Office of Management a	and Budget, Paperwork Reduction Pi	roject (0704	-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave b)	ank)	2. REPORT DATE	3. REPORT TYPE AN	ND DATE	S COVERED
4. TITLE AND SUBTITLE		31 August 2001	<u> l</u>	TE ELIN	DING WILLIAMS
Sensory Irritation Study in Mic	۰e۰ ID-	4 IP-8 IP-8+100			DING NUMBERS 1-00-C-9007
Sensory fifthation study in whe	C. J1 -	4, J1 -0, J1 -0 + 100	,	F4102	F-00-C-9007
6. AUTHOR(S)				1	
Whitman, Fredrick T.					
Hinz, John P.					
7. PERFORMING ORGANIZATION ExxonMobil Biomedical Science				1	FORMING ORGANIZATION ORT NUMBER
Laboratory Operations	es, m	٠٠.]	·
1545 Route 22 East					
(Post Office Box-971)		,	•		
		,			
Annandale, NJ 08801 9. SPONSORING/MONITORING A	GENC	Y NAME(S) AND ADDRESS(ES)	10. SPC	NSORING/MONITORING
Air Force Institute for Environment	nent,	Safety, and Occupational 1	Health Risk Analysis	AGE	ENCY REPORT NUMBER
Risk Analysis Directorate				7151	O A D C DD CD 2001 0005
Risk Analysis Division				IEI	RA-RS-BR-SR-2001-0005
2513 Kennedy Circle					
Brooks AFB, TX 78235 11. SUPPLEMENTARY NOTES				<u> </u>	
12a. DISTRIBUTION AVAILABILITY				12b. DIS	STRIBUTION CODE
Approved for public release; dis	stribut	ion unlimited			
13. ABSTRACT (Maximum 200 wo	ords)			L	
AFIERA, in concert with Army	and M	Navy colleagues, designed	a study based on ASTM	1's "Star	idard Method E 981-84" to
characterize and compare the rel					
JP-4, JP-8 and JP-8+100. The					
groups of four male Swiss-Webs					
a vapor/aerosol mixtures (JP-8,					
proportions of the hydrocarbon					
numbers in the range of C11-C1					
range of air concentrations (685					
+100) that resulted in minimal					
characteristic of upper airway se					
apparent evidence of pulmonary					
respiratory rate by 50% (RD50)					
1629 mg/m ³ . The relative irrita					
3% "rule of thumb" and withou				ggest the	following prospective PELs
for these fuels: JP-4 at ~145 mg	<u>3/m3;</u>	JP-8 at 86 mg/m3; JP-8	+100 at 49 mg/m3.	·	15. NUMBER OF PAGES
Upper respiratory tract, Sensory	irrita	tion, Alarie study, JP-4. J	IP-8. JP-8+100. Vapor		70
exposures, Aerosol exposures, M			- o, or o viso, vapor		16. PRICE CODE
•					1
17. SECURITY CLASSIFICATION OF REPORT		CURITY CLASSIFICATION F THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	CATION	20. LIMITATION OF ABSTRACT
Unclassified		Unclassified	Unclassified		UL

THIS PAGE INTENTIONALLY LEFT BLANK

EXONMOBIL BIOMEDICAL SCIENCES, INC.

FINAL REPORT

PROJECT NUMBER: 162951

TEST SUBSTANCES:

JP-4 (MRD-00-629) JP-8 (MRD-00-630) JP-8+100 (MRD-00-631)

SENSORY IRRITATION STUDY IN MICE

PERFORMED FOR:

Department of the Air Force 311th Human Systems Wing Environmental Science Branch Brooks Air Force Base Texas, 78235-5123

PERFORMED AT:

EXXONMOBIL BIOMEDICAL SCIENCES, INC.

LABORATORY OPERATIONS
1545 ROUTE 22 EAST, P.O. BOX 971
ANNANDALE, NJ 08801-0971

COMPLETION DATE: August 29, 2001 01TP 92

TABLE OF CONTENTS

		PAGE
APPROVAI	_ SIGNATURES	4
QUALITY A	ASSURANCE STATEMENT	5
PERSONNE	EL	
SUMMARY	· · · · · · · · · · · · · · · · · · ·	7
INTRODUC	TION	8-9
MATERIAL	S AND METHODS	
TEST SU	BSTANCE	10
TEST SYS	STEM	11-12
EXPERIM	TENTAL DESIGN	13-17
RESULTS		18-20
CONCLUSIO	ON	21
PROTOCOL	EXCEPTIONS	21
REFERENC	ES	22
FIGURES		
	SCHEMATIC OF GENERATION AND EXPOSURE SYSTEM (VAPOR)	23
FIGURE 2	SCHEMATIC OF GENERATION AND EXPOSURE SYSTEM (AEROSOL)	24
FIGURE 3	GROUP MEAN RESPIRATORY RATES JP4	29
FIGURE 4	GROUP MEAN RESPIRATORY RATES JP8	30
FIGURE 5	GROUP MEAN RESPIRATORY RATES JP8 +100	31
FIGURE 6	INDIVIDUAL RESPIRATORY RATES JP4	32
FIGURE 7	INDIVIDUAL RESPIRATORY RATES JP8	33
FIGURE 8	INDIVIDUAL RESPIRATORY RATES JP8	34
FIGURE 9	INDIVIDUAL RESPIRATORY RATES JP8 + 100	35
FIGURE 10	RD50 CALCULATION: JP-4, JP-8, JP-8+100	36

TABLE OF CONTENTS (CONT'D)

TABLES		
TABLE 1	SUMMARY OF MEAN STUDY DATA	2:
TABLE 2	SUMMARY OF ANIMAL RESPONSE DATA JP4	20
TABLE 3	SUMMARY OF ANIMAL RESPONSE DATA JP8	2
TABLE 4	SUMMARY OF ANIMAL RESPONSE DATA JP8 + 100	28
TABLE 5	SUMMARY OF ANALYTICAL DATA JP-4	37
TABLE 6	SUMMARY OF ANALYTICAL DATA JP-8	38
TABLE 7	SUMMARY OF ANALYTICAL DATA JP-8+100	39
APPENDIX	<u>(A:</u>	
TABLES	•	
TABLE 1A	ANALYTICAL PROCEDURES AND DETAILED	
	HYDROCARBON ANALYSES	
TABLE 2A	INDIVIDUAL HYDROCARBON DATA JP-4	42
TABLE 3A	INDIVIDUAL HYDROCARBON DATA JP-8	43
TABLE 4A	INDIVIDUAL HYDROCARBON DATA JP-8+100	44
TABLE 5A	INDIVIDUAL HYDROCARBON DATA PARTICLE SIZE SAMPI	
TABLE 6A	INDIVIDUAL HYDROCARBON DATA NEAT TEST SUBSTANC	CES 46
FIGURES		
FIGURE 1A		47
FIGURE 2A		48
FIGURE 3A		49
FIGURE 4A		50-53
FIGURE 8A		54-58
FIGURE 13	A-15A SELECTED CHROMATOGRAMS JP-8+100	59-61
APPENDIX		
(ADDITIONA	L EXPOSURES REPEATED DUE TO MISSING OR INCORRECT DATA)	
TABLES		
TABLE 1B	SUMMARY OF ANALYTICAL DATA	62
TABLE 2B	SUMMARY OF ANIMAL RESPONSE DATA	63
FIGURES		
FIGURE 1B	INDIVIDUAL RESPIRATORY RATES	64

APPROVAL SIGNATURES

(\langle	an S	X		Jun	-	29 Au	701
J. J. F	eer	nan, Ph.D., Laboratory	D	A.E	B.T.		Date	
Direct	or:/	Laboratory	Ø	era	tions			
. '	\vee							

I hereby accept responsibility for the validity of these data and declare that to the best of my knowledge, the study contained herein was performed under my supervision in compliance with OECD Principles of Good Laboratory Practice except as follows:

The EMBSI Industrial Hygiene Analytical Service Laboratory (IHASL) is not a fully GLP compliant laboratory, although it is accredited by the American Industrial Hygiene Association.

29 AUG 01

Frederick T. Whitman, M.P.H.

Study Director

ExxonMobil Biomedical Sciences, Inc.

1545 Route 22 East, P.O. Box 971

Annandale, New Jersey 08801-0971

QUALITY ASSURANCE STATEMENT

STUDY NUMBER: 162951

TEST SUBSTANCE: MRD-00-629, MRD-00-630, MRD-00-631

STUDY SPONSOR: Department of the Air Force

Listed below are the inspections performed by the Quality Assurance Unit of ExxonMobil Biomedical Sciences, Inc., the date(s) of inspection, and the date(s) findings were reported to the Study Director and Management.

Study Phase Inspected	Date(s) of Inspection	Reported to Study Director	Reported to Management
Protocol	06 Oct 00	06 Oct 00	13 Oct 00
Dosing (Day 0)	01 Dec 00	01 Dec 00	12,13 Dec 00
Final Report	05 May 01 to 28 Jun 01	28 Jun 01	28 Jun 01 & 16 Jul 01
Second Review of Final Report	10-13 Jul 01	13 Jul 01	13 Jul 01 & 14 Aug 01
Third Review of Final Report	13 Aug 01	13 Aug 01	13,16 Aug 01

The final report accurately reflects the methods, procedures and observations documented in the raw data.

W. James/Bover, Ph.D.

Quality Assurance Section Head

PERSONNEL

Study Director:

F. T. Whitman, M.P.H.

ExxonMobil Biomedical Sciences, Inc. 1545 Route 22 East, P.O. Box 971 Annandale, New Jersey 08801-0971

Sponsor Representative:

John P. Hinz, M.S.

Sponsor:

Department of the Air Force 311th Human Systems Wing Environmental Science Branch

Brooks Air Force Base Texas, 78235-5123

Director: Laboratory Operations:

J. J. Freeman, Ph.D., D.A.B.T.

General Toxicology Group Head:

G. W. Trimmer, B.A.

Industrial Hygiene Laboratory Supervisor

J. L. Martin, Ph.D.

Compound Preparation Supervisor:

E. J. Febbo, M.S.

Quality Assurance/Archives Section Head:

W. J. Bover, Ph.D.

Veterinarian:

R. L. Harris, D.V.M.

SUMMARY

This study was conducted to evaluate the sensory irritation potential of JP-4 (MRD-00-629), JP-8 (MRD-00-630), and JP-8 100 (MRD-00-631) in mice during inhalation exposure.

The test substances were administered head only for 30 minutes to groups of four male Swiss-Webster mice as either vapor-only (JP-4) or combined vapor/aerosol atmospheres (JP-8+100 and JP-8). Group mean exposure concentrations ranged from 685 - 11430 mg/m³ (JP-4), 681 - 3613 mg/m³ (JP-8), and 777 - 2356 mg/m³ (JP-8+100). Analytical sampling data demonstrated clear differences in the distribution and relative proportions of individual hydrocarbon species contained in the aerosol and vapor phases, with the lighter molecular weight hydrocarbons more abundant in the vapor samples. The on-line vapor and aerosol monitors demonstrated that the test atmospheres for all groups were stable throughout the exposure periods.

The three test substances evoked breathing patterns characteristic of upper airway sensory irritation at all exposure levels. Within the context and limits of this study, examination of the breathing patterns revealed no apparent pulmonary (deep lung) irritation or narcosis at any level for all three substances.

Each substance was tested over a range of air concentrations that resulted in minimal to extreme respiratory rate decreases (>50% decrease). This allowed calculation of an RD_{50} value for each test substance. The RD_{50} values were:

JP-4 - 4842 mg/m³, with 95% confidence limits of 2375 to 9873.

JP-8 - 2876 mg/m³, with 95% confidence limits of 2107 to 3925.

JP-8+100 - 1629 mg/m³, with 95% confidence limits of 1418 to 1871

Based on these results, the relative irritancy ranking of the three test substances could be described as: JP-8+100 > JP-8 > JP-4.

INTRODUCTION

This study was conducted in order to evaluate the sensory irritation potential in the mouse of JP-4 (MRD-00-629), JP-8 (MRD-00-630) and JP-8+100 (MRD-00-631).

Alarie (1966) proposed that a correlation exists between chemicals causing a decrease in respiratory rate in male Swiss-Webster-mice and sensory irritant properties in humans. Measurement of the reflex decrease in respiratory rate that occurs with stimulation of trigeminal nerve endings in the nasal mucosa of mice therefore may be used as screening tool to predict acceptable exposure concentrations or to help establish threshold limit values, short-term exposure limits, etc. The RD50, defined as the concentration associated with a 50% decrease in respiratory rate, is often used as a benchmark to evaluate airborne chemicals or mixtures of chemicals for sensory irritant effects.

The study was conducted by ExxonMobil Biomedical Sciences, Inc. (EMBSI), Laboratory Operations, Mammalian Toxicology Laboratory, 1545 Route 22 East, P.O. Box 971, Annandale, New Jersey 08801-0971 which is accredited by the Association for the Assessment and Accreditation of Laboratory Animal Care (AAALAC International). The analytical portion of the study was conducted by the EMBSI Industrial Hygiene Analytical Service Laboratory (IHASL), which is accredited by the American Industrial Hygiene Association.

Study Initiation (Protocol Signature Date)

November 9, 2000

Experimental Starting and Completion Date

November 29, 2000 and May 8, 2001

Justification for Selection of Test System

Swiss-Webster mice are the strain and species of choice for sensory irritation studies (ASTM E981-84, 1996).

Justification of Dosing Route

Potential human exposure may be by the inhalation route.

Compliance

This study was conducted in compliance with the following standards:

OECD, Organization for Economic Cooperation and Development, Principles of Good Laboratory Practice, C(97) 186/Final, 1997.

Unites States Environmental Protection Agency, 40 CFR Part 792, Toxic Substances Control Act (TSCA), Good Laboratory Practice Standards (GLP's), Final Rule 1989.

This study was conducted in general agreement with the following guidelines and standards:

Standard Test Method for Estimating Sensory Irritation of Airborne Chemicals. <u>American Society for Testing and Materials</u>. Designation: E981-84 (Reapproved 1996).

Animal Welfare Act of 1966 (P.L. 89-544), as amended in 1970, 1976, and 1985. Code of Federal Regulations, Title 9 [Animals and Animal Products], Subchapter A - Animal Welfare Parts 1, 2, and 3.

Guide for the Care and Use of Laboratory Animals, Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council, National Academy Press, Washington, D.C., 1996.

MATERIALS AND METHODS

TEST SUBSTANCE

Substance Identification

EMBSI Identification:	Sponsor Identification:
MRD-00-629	JP-4
MRD-00-630	JP-8
MRD-00-631	JP-8+100
Supplier:	Mantech Environmental Tech Inc.
	WPAB Area B Bldg. 79 Rm. 154
	Dayton, OH 45433
Date Received:	July 19, 2000
Expiration Date:	July 2005
Description:	Pale yellow liquids
Storage Condition:	Room temperature

Each test substance, as received, was considered the "pure" substance.

Characterization of Test Substance

Samples of the test atmosphere at each exposure level were analyzed by gas chromatography. The concentrations of selected individual components were reported. Samples of each neat (liquid) test substance also were analyzed by gas chromatography for reference and comparison to the air samples.

Analysis of Mixtures

Not applicable to this study.

Solubility

Not applicable to this study.

Sample Retention

Archival samples of the test substances were not retained for this study.

Carrier

Air

MATERIALS AND METHODS

TEST SYSTEM

Test Animal

Species:

Mouse

Strain/stock:

Swiss-Webster

Supplier:

Charles River Laboratories, Inc.

Portage, MI

Animal Receipt Information

Receipt Date:	Order Number:
7 November 2000	20070958
5 December 2000	20076820
2 January 2001	20100021
7 March 2001	20114956
24 April 2001	20126876

Quarantine and Acclimation Period

At least 7 days; animals were examined for viability at least once daily.

Number and Sex/Group

4 males

Age at Initiation of Dosing

5 - 10 weeks

Weight at Initiation of Dosing

24 - 30 grams

Animal Identification

Tail tattoo and corresponding cage identification.

Selection

More animals than required for the conduct of the study were purchased and acclimated. Animals determined to be unsuitable for inclusion in the study because of poor health, outlying body weight, or other abnormalities were excluded from selection by the attending veterinarian, Study Director and/or the technical staff. Animals were allocated to study groups immediately prior to exposure on the basis of general health and body weight requirements.

Housing

Room:

PE112

Housing:

Single housed during the study period.

Caging:

Suspended stainless steel and wire mesh with absorbent

paper below cages.

Feed

PMI Certified Rodent Diet Checkers 5002

Manufacturer:

PMI Feeds, Richmond, Indiana

Analysis:

Performed by PMI Feeds. Copies of the feed analyses are

maintained at the EMBSI Laboratory.

Contaminants:

There were no known contaminants in the feed believed to have been present at levels that may have interfered with this

study.

The availability of feed was checked at least once daily for all animals.

Water

Automatic Watering System, ad libitum

Supplier:

ExxonMobil Research and Engineering, Potable Water

System.

Analysis:

Periodic analysis is the responsibility of EMBSI. A copy of

the results is maintained at EMBSI.

Contaminants:

There were no known contaminants in the water believed to

have been present at levels that may have interfered with this

study.

The availability of water was checked at least once daily for all animals.

Environmental Conditions

Temperature:

64 to 72 degrees Fahrenheit

Humidity:

30 to 70 percent relative humidity

Lighting:

Approximately 12 hours light (0600 to 1800) and 12 hours

dark (1800 to 0600) by automatic timer.

Monitored at least once daily. Additionally, a non-validated computerized system monitored the temperature, humidity, and lighting continuously for alarm purposes.

EXPERIMENTAL DESIGN

Preparation of Test Substance

The test substance was administered as received.

Experimental Groups

Test Substance	Mean Analytical Concentration (mg/m ³)	Number of Animals
JP - 4 (MRD-00-629)	11430 <u>+</u> 66	4
JP - 4 (MRD-00-629)	1888 <u>+</u> 55	4
JP - 4 (MRD-00-629)	956 <u>+</u> 59	4
JP - 4 (MRD-00-629)	685 <u>+</u> 56	4
JP - 8 (MRD-00-630)	3565 ± 129	4
JP - 8 (MRD-00-630)	1837 <u>+</u> 68	4
JP - 8 (MRD-00-630)	1090 ± 22	4
JP - 8 (MRD-00-630)	681 <u>+</u> 40	4
JP - 8 (MRD-00-630)	708 <u>+</u> 33	4
JP - 8 + 100 (MRD-00-631)	2356 <u>+</u> 10	4
JP - 8 + 100 (MRD-00-631)	1519 <u>+</u> 39	4
JP - 8 + 100 (MRD-00-631)	777 <u>±</u> 26	4

Note: Two additional groups were exposed but not presented in the main study data due to missing or inconsistent analytical samples. The results of these additional exposures are presented in Appendix B.

Administration of Test Substance

Figures 1-2 present schematic drawings of the test atmosphere generation and exposure systems.

Each test substance was administered as either an aerosol, vapor or mixed atmosphere in air.

Vapor test atmospheres were generated by using a syringe pump to deliver the test substance to the inside surface of a heated glass "counter current" generator. The vapor generator was a cylindrical glass tube impressed with a spiral indentation that served as a channel for the liquid test substance. The spiral indentation was heated with heating tape to a constant temperature (dependent on the target concentration), and continuously monitored by a thermocouple probe and digital thermometer. The test substance volatilized as it flowed down the heated generator. The resulting vapors were drawn into the exposure chamber with the supply air moving countercurrent to the liquid flow.

Alternatively, test atmospheres were generated as a liquid droplet aerosol using a Collison nebulizer. The nebulizer's reservoir was filled with the test substance to a level just below the top of the liquid feed tube. Compressed air was supplied to the nebulizer, metered by a rotameter at a rate sufficient to aerosolize the test substance. The resultant liquid aerosol atmosphere mixed with additional room air that was drawn through the reservoir and expelled into the chamber.

Concentration Determinations

Exposure concentrations were determined on both a nominal and analytical basis. The nominal concentration was calculated by dividing the net weight of the test substance used during the exposure by the total volume of air passing through the chamber.

Analytical chamber concentrations were determined three times during each exposure by drawing a known volume of chamber air, metered by a critical orifice, through a sampling train consisting of a 25 mm glass fiber filter for analysis of non-volatile aerosol followed by a charcoal sorbent tube for total volatile hydrocarbons (vapor). After sampling, the sorbent tubes were capped and the filter samples were placed in sealed glass vials containing approximately 10 ml carbon disulfide. The sorbent tubes and filters were then submitted to the Industrial Hygiene Analytical Service Laboratory (IHASL) for subsequent analysis.

Both sample types (aerosol and vapor) were analyzed by gas chromatography/FID and each reported as total hydrocarbon concentration (THC). Additionally, one sample set (filter and sorbent tube) from each exposure was analyzed for a standard

list of representative hydrocarbons in order to evaluate and compare the distribution of individual components within the aerosol and vapor phases.

The analytical exposure concentrations (THC) were calculated both separately and as the sum of the aerosol and vapor phase concentrations. One sample of each neat test substance also was analyzed for reference and comparison to the chamber samples.

An on-line infrared vapor monitor (MIRAN 1A) was used during each exposure (when practical due to the amount of aerosol present) to monitor the relative levels and stability of the vapor phase of the chamber atmosphere.

An on-line photometric particle monitor (Sibata Model P5) also was used during each exposure to monitor the relative levels and stability of the aerosol present in the chamber atmospheres.

Particle Size Analysis

A particle size determination of the aerosol portion of the test atmosphere was conducted once for each test substance, during a representative animal exposure, using a Sierra Instruments Model 210 Cascade Impactor. Preweighed glass fiber filters were used to collect the aerosol on each stage. A bulk estimation technique was employed to characterize the particle size distribution of the test atmosphere. The change in weight of the filter for each stage was measured and the cumulative percent of the sample collected on each stage was calculated. This information plus the stage constants (size cutoff diameters in microns) for the impactor were used, with the aid of a computer, to calculate the 15.9%, 50.0%, and 84.1% particle sizes (equivalent aerodynamic diameter), the geometric standard deviation, and the estimated percent of the aerosol less than or equal to 1, 10, and 15 microns in size.

Additionally, the filters from the three stages closest to the 15.9%, 50.0%, and 84.1% particle sizes (equivalent aerodynamic diameter) were analyzed by gas chromotography/FID for individual hydrocarbon concentrations.

Animal Exposure Procedures

The chamber used for the exposures was all glass and had a total volume of approximately 4.0 liters. It operated under slight negative pressure to the room at approximately 30.0 liters per minute airflow, regulated by a calibrated flow-limiting orifice. The theoretical equilibration time (T₉₉) was calculated as 36 seconds, which is approximately 2% of the exposure duration.

The test animals were loaded into body-only plethysmographs which isolated the animal's head from its body via a latex dam. The plethysmographs were then mounted onto the glass exposure chamber such that the animals received head-only exposures to the test atmosphere.

Each animal was monitored by a differential air pressure transducer that converted the tidal pressure changes produced by the animal's breathing within the plethysmograph into an electrical signal. The signals produced by the tidal pressure changes (animal breathing patterns) were recorded on an eight-channel analog oscillograph (Gould, Model RS 3800).

Each exposure group was monitored in the following sequence:

Pre-test: At least 10 minutes of room air to establish baseline rates.

Exposure: 30 minutes of test substance exposure.

Recovery: At least 10 minutes of room air to monitor return to pre-test

levels.

Animal Observations

Individual animal observations were performed before, during and after each exposure.

Termination

All test animals were euthanized via asphyxiation with carbon dioxide after completion of the exposure and discarded without further evaluation.

Animal Response Evaluation

Animal respiratory rates and breathing patterns were determined from the oscillographic record. The average pretest rate and the lowest representative rate during exposure were determined for each animal in a group. The low rate was divided by the pretest rate to obtain a "Percent of Pretest" value. The Percent of Pretest value was subtracted from 100% to yield the animal response (Percent Change in Rate). Individual animals in each group were evaluated first, then averaged to determine the mean group response. The post-exposure (recovery) rates were similarly evaluated to determine the recovery response - the percent return to pretest rates.

Statistical Analysis

Statistical analyses included means and standard deviations for relevant study data. (Snedecor and Cochran, 1989).

The mean group responses and exposure concentrations were entered into a computerized least-squares analysis to determine the concentration of test material required to reduce respiratory rate by 50% (RD₅₀), the 95% confidence limits, the slope function of the plotted data, and the fit of the data from the experiment (Snedecor and Cochran, 1989: Litchfield and Wilcoxon, 1949).

Records

The protocol, all raw data, the final report, computer generated listings of raw data, and supporting documentation are maintained on file in the EMBSI archives. Raw data for the analytical samples will be maintained in the Industrial Hygiene Laboratory files.

RESULTS

EXPOSURE CONCENTRATIONS:

Tables 1-13 present summaries of the analytical data. Appendix A presents the analytical methods and summaries of the individual hydrocarbon analyses for selected samples.

JP-4 (MRD-00-629)

Four groups of male mice were exposed for 30 minutes to total analytical concentrations of 11430, 1888, 956, or 685 mg/m³. The exposure atmospheres for this test substance (generated as a vapor) essentially contained no aerosol except at the highest concentration (11430 mg/m³). A small amount of aerosol was found at this level (82 mg/m³) although it represented less than 1% of the total concentration.

A particle size sample was taken during the exposure at the highest level (11430 mg/m3) however there was insufficient aerosol present to accurately calculate a particle size distribution.

JP-8 (MRD-00-630)

Four groups of male mice were exposed for 30 minutes to total analytical concentrations of 3565, 1837, 1090, or 681 mg/m³. The exposures for this test substance (generated as an aerosol) were predominantly vapor although they included significant amounts of aerosol. The proportion of aerosol ranged from 3% at 681 mg/m³ to 35% at 3613 mg/m³. There was a clear difference in the distribution and relative proportions of individual hydrocarbon species contained in the aerosol and vapor phases, with the lighter molecular weight hydrocarbons more abundant in the vapor samples (see Appendix A for individual hydrocarbon analyses and chromatograms).

A fifth group of mice was exposed to a vapor-generated atmosphere (708 mg/m3) at a level similar to the lowest aerosol-generated group (681 mg/m³) in order to compare the animal responses to these potentially different exposures. This group contained no detectable aerosol.

A particle size sample was taken during the exposure at the 1090 mg/m³ level. The results of this analysis showed a median aerodynamic particle size of 0.25 microns, with 99.7% of the particles less than or equal to 10 microns and 84.7% less than or equal to 1.0 micron. This demonstrates that the aerosol was highly respirable.

JP-8+100 (MRD-00-631)

Three groups of male mice were exposed for 30 minutes to total analytical concentrations of 2356, 1519, or 777 mg/m³. The exposures for this test substance also were predominantly

vapor phase with the proportion of aerosol ranging from 26% at 2356 mg/m³ to 4% at 777 mg/m³. The difference in the relative proportions of individual hydrocarbon species between the aerosol and vapor phases was similar to JP-8, except there appeared to be an even higher amount of lighter molecular weight hydrocarbons in the vapor samples (see Appendix A for individual hydrocarbon analyses and chromatograms).

A particle size sample was taken during the exposure at the 2356 mg/m³ level. The results of this analysis showed a median aerodynamic particle size of 1.27 microns, with 99.9% of the particles less than or equal to 10 microns and 36.5% less than or equal to 1.0 micron. This demonstrates that the aerosol phase of JP-8+100 also was highly respirable.

ANIMAL RESPONSE DATA:

Tables 2-4 present summaries of the animal response data. Figures 3-9 present graphs of the individual and group mean respiratory rates.

JP-4 (MRD-00-629)

Group mean respiratory rates were decreased from baseline values 58%, 51%, 28%, and 11% at mean exposure concentrations of 11430, 1888, 956, and 685 mg/m³, respectively. Breathing patterns characteristic of sensory irritation were observed in all mice in the three highest exposure concentrations; only 2 of the 4 mice in the lowest exposure group exhibited slight irritation (2 were normal). There was no evidence of narcosis or pulmonary irritation at any level.

The mice in the two highest exposure groups (11430 and 1888 mg/m³) exhibited a decreased recovery following exposure (61% and 82% of baseline values) compared to the two lower exposure groups which returned to pre-exposure levels (103% at 956 mg/m³; 96% at 685 mg/m³).

All mice in all four groups appeared normal at clinical observations performed prior to, during, and immediately after the exposures.

JP-8 (MRD-00-630)

Group mean respiratory rates were decreased from baseline values 50%, 46%, 38%, and 22% at mean exposure concentrations of 3565, 1837, 1090, or 681 mg/m³, respectively. Breathing patterns characteristic of sensory irritation were observed in all mice in all groups. There was no evidence of narcosis or pulmonary irritation at any level.

An additional group was exposed to JP-8 as a vapor-only atmosphere at 708 mg/m³ and produced a similar response (28% decrease) compared to the aerosol-generated 681 mg/m³ group (22% decrease).

The post-exposure recovery responses were depressed in all five groups, with the amount of depression proportional to the exposure concentration (75%, 77%, 86%, 93%, and 86% of baseline values at 3565, 1837, 1090, 681, and 708 mg/m³, respectively).

All mice in all five groups appeared normal at clinical observations performed prior to, during, and immediately after the exposures.

JP-8+100 (MRD-00-631)

Group mean respiratory rates were decreased from baseline values 63%, 53%, or 18% at mean exposure concentrations of 2356, 1519, or 777 mg/m³, respectively. Breathing patterns characteristic of sensory irritation were observed in all mice in all groups. There was no evidence of narcosis or pulmonary irritation at any level.

The mice in the two highest exposure groups (2356 and 1519 mg/m³) exhibited a decreased recovery following exposure (59% and 68% of baseline values) compared to the lowest exposure group (777 mg/m³) which returned to pre-exposure levels (103%).

All mice in all three groups appeared normal at clinical observations performed prior to, during, and immediately after the exposures.

RD₅₀ CALCULATIONS:

Figure 10 presents a graph of the exposure concentrations vs. respiratory rate decreases.

The exposure concentration of each test substance that would produce a 50% decrease in respiratory rate (RD₅₀) was calculated to be:

JP-4 - 4842 mg/m³, with 95% confidence limits of 2375 to 9873.

JP-8 - 2876 mg/m³, with 95% confidence limits of 2107 to 3925.

JP-8+100 - 1629 mg/m³, with 95% confidence limits of 1418 to 1871

CONCLUSIONS

Exposures to test atmospheres of each of the three test substances, JP-4 (MRD-00-629), JP-8 (MRD-00-630) and JP-8+100 (MRD-00-631) produced breathing patterns characteristic of upper airway sensory irritation in mice. Within the context and limits of this study, examination of the breathing patterns revealed no apparent pulmonary (deep lung) irritation or narcosis at any level for all three substances.

The exposures were generated as vapor-only (JP-4) or mixed vapor/aerosol atmospheres (JP-8 and JP-8+100). Each substance was tested over a range of air concentrations that resulted in minimal to extreme respiratory rate decreases (>50% decrease). The calculated RD₅₀ values showed a relative irritancy ranking of JP-8+100 > JP-8 > JP-4.

Analytical sampling data demonstrated clear differences in the distribution and relative proportions of individual hydrocarbon species contained in the aerosol and vapor phases. As expected, there were differences among the three test substances with JP-4 exhibiting a range of lower molecular weight hydrocarbons compared to JP-8 or JP-8+100. Within the mixed vapor/aerosol atmospheres of JP-8 and JP-8+100, the vapor phase samples showed a greater abundance of lighter hydrocarbons compared to the aerosol phase samples. The online vapor and aerosol monitors demonstrated that the test atmospheres for all groups were stable throughout the exposure periods.

PROTOCOL EXCEPTIONS

On six occasions the animal room temperature or humidity was outside of the ranges specified in the protocol. These slight and transient deviations should not have affected the quality or integrity of the data.

REFERENCES

Additional references for the Alarie sensory irritation assay:

Alarie, Y. (1966) Arch. Environ. Health 13:433

Alarie, Y. (1981) Fd. Cosmet. Toxicol. 19:623

Barrow, C., Alarie, Y., Warrick, J. and Stock, M. (1977) Arch. Environ. Health 32:68

Nielsen, G.D., and Alarie, Y. (1982) Tox. Appl. Pharm. 65:459

Weyel, D.A., Rodney, B.S., and Alarie, Y. (1982) Tox. Appl. Pharm. 64:423

FIGURE 1 - SCHEMATIC OF GENERATION AND EXPOSURE SYSTEM (COUNTER-CURRENT VAPOR GENERATOR)

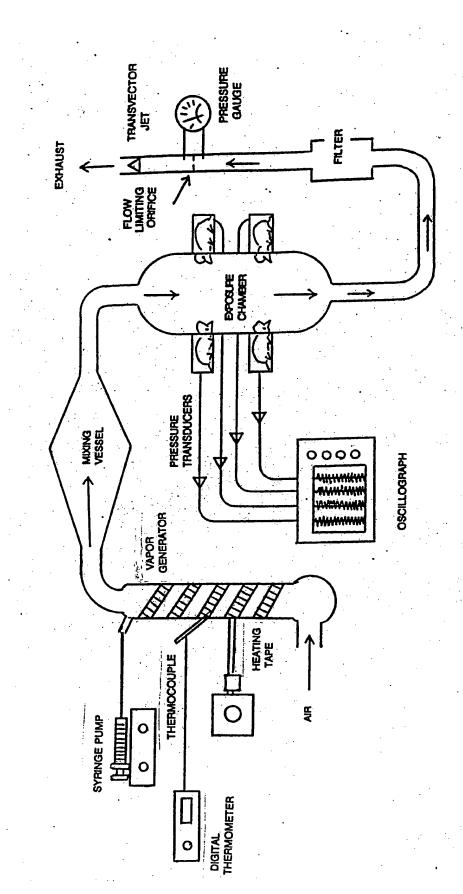
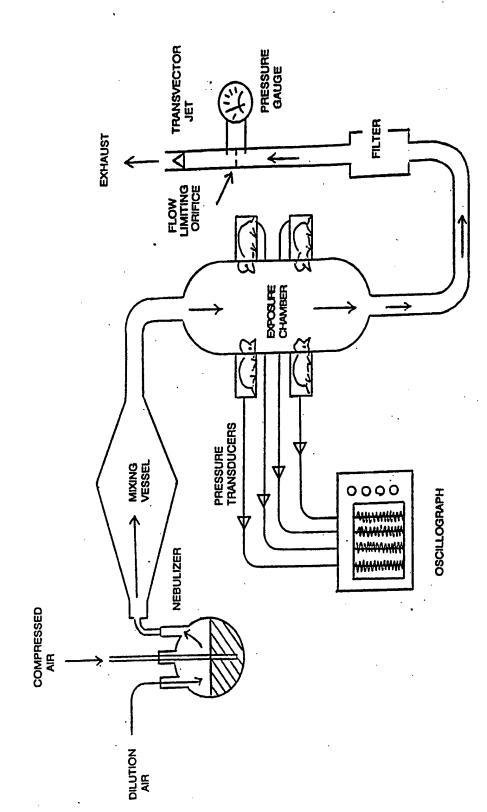



FIGURE 2 - SCHEMATIC OF GENERATION AND EXPOSURE SYSTEM (NEBULIZER)

Page 24 of 64

TABLE 1 - SUMMARY OF MEAN STUDY DATA

Test Substance		JP - 4	4				JP-8				JP - 8 + 100	
Total Exposure Concentration												
Mean Concentration (mg/m³)	11430	1888	926	989	3565	1837	1090	681	208	2356	1519	777
Standard Deviation	99	55	59	99	129	89	22	40	33	10	39	26
Coefficient of Variation (%)	9.0	2.9	6.2	8.2	3.6	3.7	2.0	6'5	4.7	0.4	2.5	3.3
Vapor/Aerosoli Concentration												
Vapor Concentration (mg/m³)	11349	1888	926	685	2335	1379	920	859	708	1754	1220	748
Aerosol Concentration (mg/m³)	81	0	0	0	1230	459	170	23	0	603	300	29
% Aerosol	0.7	0	0	0	34.5	25.0	15.6	3.4	0	25.6	19.7	3.7
Particle Size Analysis												
Median particle size (um)	5:35						0.25			1.27		
Geometric Standard Deviation	2.21						3.89			2.00		
Percent Less Than 10 microns	78.4						2.66			6.66		
Percent Less Than 1 micron	1.7						84.7			36.5		Ti.
Animal Response Data:												
Percent Respiratory Rate Decrease	-58	-51	-28	-11	-50	-46	-38	-22	-28	-63	-53	-18
Percent Recovery to Baseline	61	82	103	96	75	77	98	63	98	59	89	103
$\mathrm{RD}_{50}~(\mathrm{mg/m}^3)$		4842	42				2876				1629	
95 % Confidence Interval		2375 - 9873	9873				2107 - 3925	2			1418 - 1871	

* - Atmosphere generated as vapor only

TABLE 2-SUMMARY OF ANIMAL RESPONSE DATA JP-4 (MRD-00-629)

CONCENTRATION	ANIMAL	BODY WEIGHT (g)	EXPOSURE RESPONSE (%)	RECOVERY RESPONSE (%)	IRRITATION TYPE/ SEVERITY*	GROSS (pretest)	GROSS OBSERVATIONS test) (inchamber) (po	ONS (postdose)
11,430 mg/m³	IAY933 IAY934 IAY945 IAY950 MEAN S.D.	% % % % % % % % % % %	ሷ አኔ ኢኔ ሷ ጵኔ ሂ	71 53 62 64 78	SENSORY/EXTREME SENSORY/EXTREME SENSORY/EXTREME SENSORY/EXTREME	NOA NOA NOA NOA	NOA NOA NOA NOA	NOA NOA NOA NOA
1,888 mg/m³	1AY939 1AY941 1AY943 1AY944 MEAN S.D.	9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	54 56 56 56 57 58 58 58 58 58 58 58 58 58 58 58 58 58	85 76 76 87 82	SENSORY/MODERATE SENSORY/EXTREME SENSORY/EXTREME SENSORY/MODERATE	NOA NOA NOA	NOA NOA NOA	NOA NOA NOA NOA
956 mg/m³	1AY952 1AY953 1AY963 1AY972 MEAN S.D.	888 8678	-29 -33 -30 -18 -28 6.6	94 98 115 105 103	SENSORY/MODERATE SENSORY/MODERATE SENSORY/MODERATE SENSORY/SLIGHT	NOA NOA NOA NOA	NOA NOA NOA	NOA NOA NOA
685 mg/m³	IAZ386 IAZ394 IAZ402 IAZ405 MEAN S.D.	27 27 27 27 27 0.5	.12 .9 .16 .7 .7	97 96 91 100 96 37	SENSORY/SLIGHT SENSORY/NONE SENSORY/SLIGHT SENSORY/NONE	NOA NOA NOA	NOA NOA NOA NOA	NOA NOA NOA

NOA - NO OBSERVABLE ABNORMALITIES

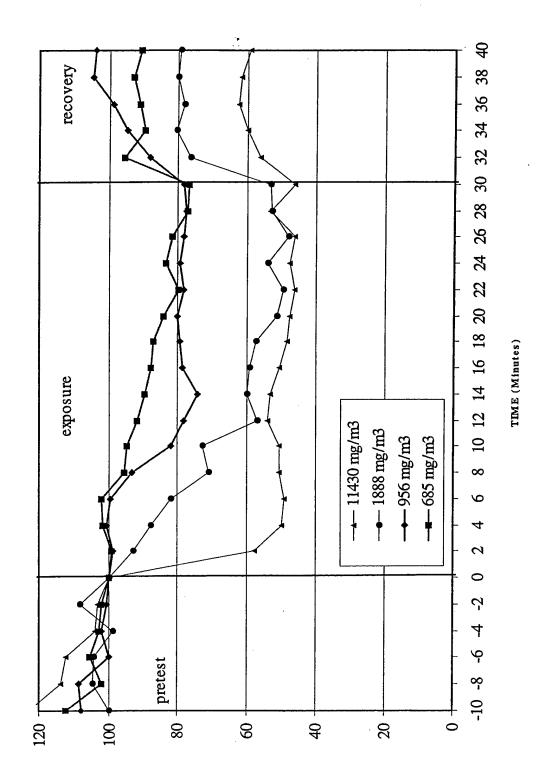
* Severity categorized as: slight = 12-19%; moderate = 20-49%; extreme = $\geq 50\%$.

TABLE 3 - SUMMARY OF ANIMAL RESPONSE DATA JP-8 (MRD-00-630)

CONCENTRATION	ANIMAL	BODY WEIGHT (g)	EXPOSURE RESPONSE (%)	RESPONSE (%)	RRITATION TYPE/ SEVERITY*	GROS (pretest)	GROSS OBSERVATIONS est) (inchamber) (po	ONS (postdose)
3613 mg/m³	IAZ385 IAZ391 IAZ397 IAZ399 MEAN S.D.	29 29 29 0.5	.54 .54 .51 .50 .50	76 72 76 75 1.9	SENSORY/EXTREME SENSORY/EXTREME SENSORY/MODERATE SENSORY/MODERATE	NOA NOA NOA	NOA NOA NOA	NOA NOA NOA
1837 mg/m³	IAY981 IAY984 IAY986 IAY989 MEAN S.D.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25. 25. 25. 24. 3. 3.3. 4.6.	80 64 70 95 77 13.5	SENSORY/MODERATE SENSORY/EXTREME SENSORY/EXTREME SENSORY/MODERATE	NOA NOA NOA	NOA NOA NOA NOA	NOA NOA NOA NOA
1090 mg/m³	IAY974 IAY976 IAY977 IAY994 MEAN S.D.	27 27 30 27 28 1.5	-41 -33 -37 -41 -38	77 90 90 85 86 6.1	SENSORY/MODERATE SENSORY/MODERATE SENSORY/MODERATE SENSORY/MODERATE	NOA NOA NOA	NOA NOA NOA NOA	NOA NOA NOA
681 mg/m³	1AZ393 1AZ400 1AZ401 1AZ403 MEAN S.D.	50 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	.24 .25 .23 .23 .46	91 86 100 93 93 5.9	SENSORY/MODERATE SENSORY/MODERATE SENSORY/SLIGHT SENSORY/MODERATE	NOA NOA NOA	NOA NOA NOA NOA	NOA NOA NOA
708 mg/m³	1AY978 1AY979 1AY980 1AY982 MEAN S.D.	28 27 27 28 9.6	-25 -36 -30 -22 -28 -58	86 90 98 88 7.9	SENSORY/MODERATE SENSORY/MODERATE SENSORY/MODERATE SENSORY/MODERATE	NOA NOA NOA	NOA NOA NOA	N N N N N N N N N N N N N N N N N N N

NOA - NO OBSERVABLE ABNORMALITIES

* Severity categorized as: slight = 12-19%; moderate = 20-49%; extreme = $\geq 50\%$.


TABLE 4-SUMMARY OF ANIMAL RESPONSE DATA (CONT'D) JP-8 + 100 (MRD-00-631)

CONCENTRATION	ANIMAL	BODY WEIGHT (g)	EXPOSURE RESPONSE (%)	RECOVERY RESPONSE (%)	IRRITATION TYPE/ SEVERITY*	GROSS (pretest)	GROSS OBSERVATIONS (est) (inchamber) (post	TIONS (postdose)
2356 mg/m³	1AZ390 1AZ392 1AZ395 1AZ404 MEAN S.D.	28 29 27 0.8	49 64 69 69 87	56 46 77 58 59 12.9	SENSORY/EXTREME SENSORY/EXTREME SENSORY/EXTREME SENSORY/EXTREME	NOA NOA NOA NOA	NOA NOA NOA	NOA NOA NOA NOA
1519 mg/m³	IAZ459 IAZ460 IAZ467 IAZ469 MEAN S.D.	25 26 26 36 0.5	4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	48 75 65 82 68 14.8	SENSOR Y/EXTREME SENSOR Y/EXTREME SENSOR Y/EXTREME SENSOR Y/EXTREME	NOA NOA NOA	N N N N N N N N N N N N N N N N N N N	NOA NOA NOA
777 mg/m³	IAZ466 IAZ468 IAZ470 IAZ471 MEAN S.D.	27 28 27 20 6	.17 -16 -15 -22 -18	98 116 103 94 103	SENSOR Y/SLIGHT SENSOR Y/SLIGHT SENSOR Y/SLIGHT SENSOR Y/MODERATE	NOA NOA NOA	NOA NOA NOA	NOA NOA NOA NOA

NOA - NO OBSERVABLE ABNORMALITIES

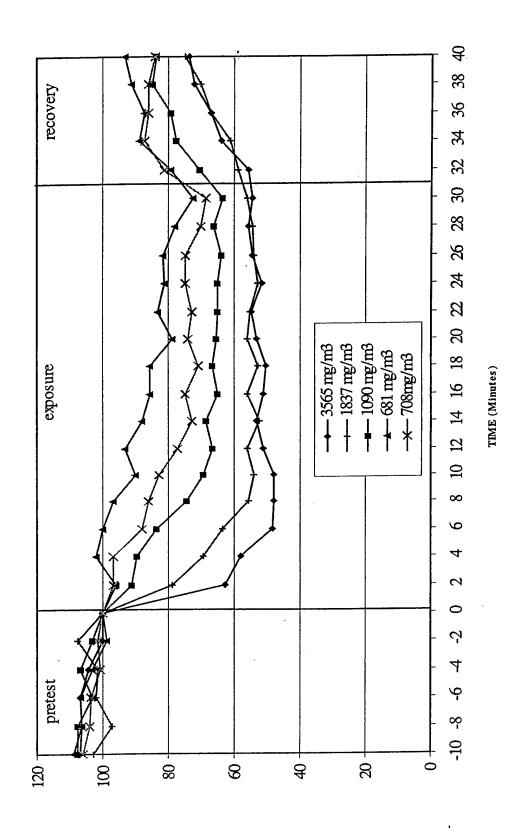

 $^{\bullet}$ Severity categorized as: slight = 12-19%; moderate = 20-49%; extreme = \geq 50%.

FIGURE 3 - GROUP MEAN RESPIRATORY RATES: JP-4 (MRD-00-629)

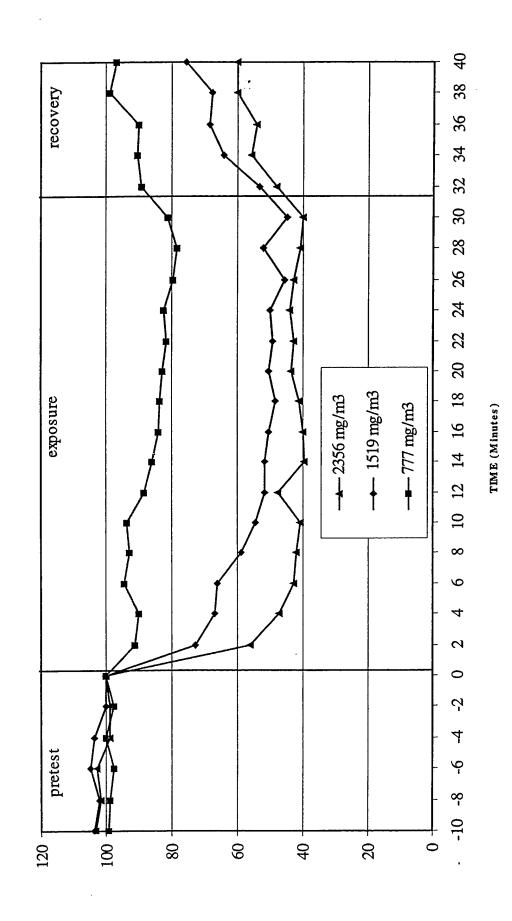
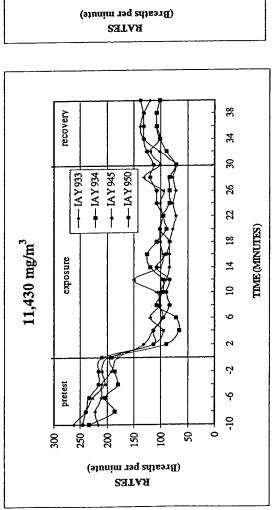
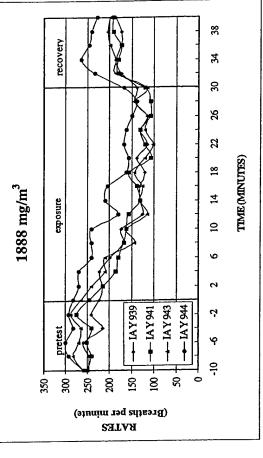
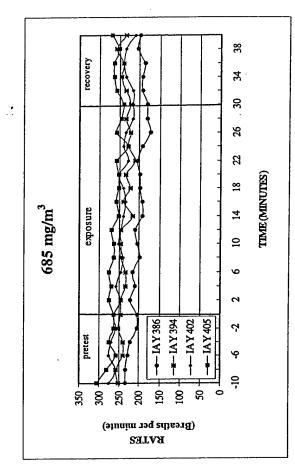

Page 29 of 64

FIGURE 4 - GROUP MEAN RESPIRATORY RATES: JP-8 (MRD-00-630)


Page 30 of 64


FIGURE 5 - GROUP MEAN RESPIRATORY RATES: JP-8+100 (MRD-00-631)



Page 31 of 64.

FIGURE 6 - INDIVIDUAL RESPIRATORY RATES: JP-4 (MRD-00-629)

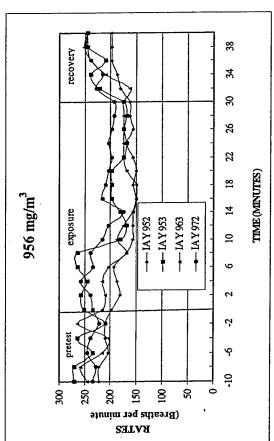
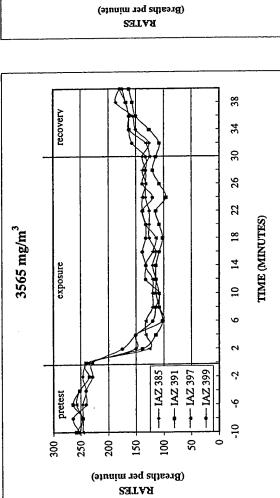
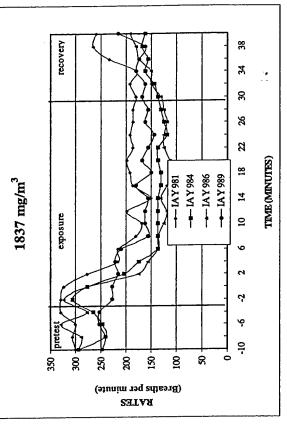
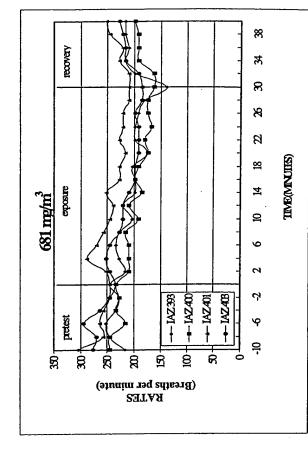
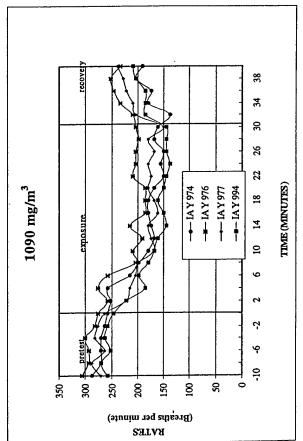






FIGURE 7 - INDIVIDUAL RESPIRATORY RATES: JP-8 (MRD-00-630)

Page 33 of 64

FIGURE 8 - INDIVIDUAL RESPIRATORY RATES: JP-8 (MRD-00-630)
Vapor Only Exposure

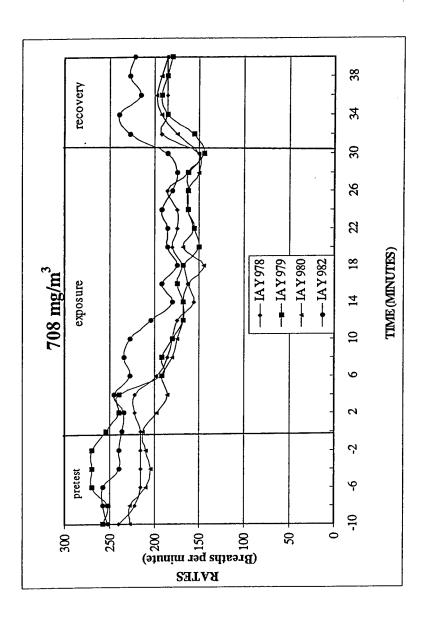
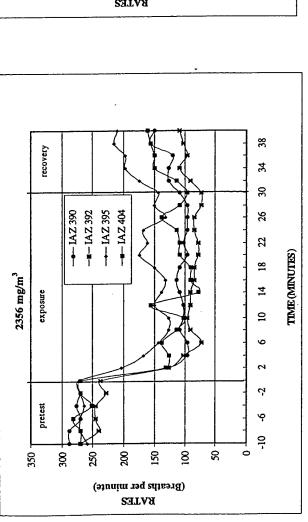




FIGURE 9 - INDIVIDUAL RESPIRATORY RATES: JP-8+100

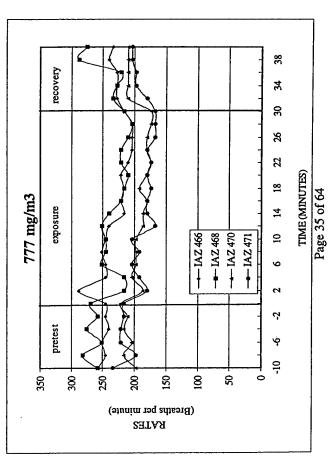
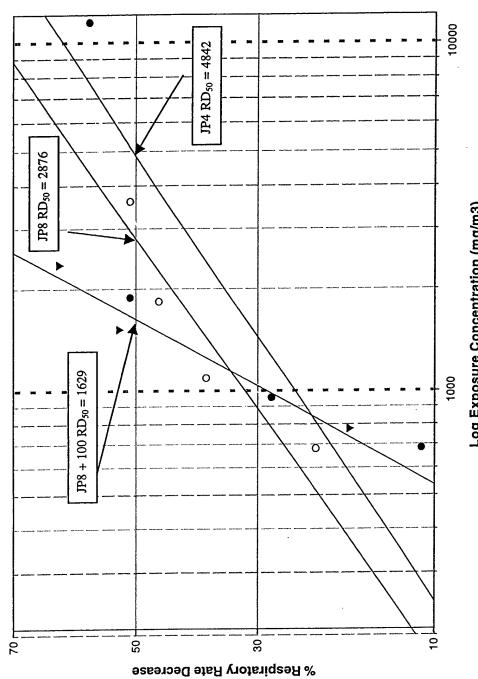



FIGURE 10 - RD 50 CALCULATION: JP-4, JP-8, JP-8+100

. ,

Log Exposure Concentration (mg/m3)

TABLE 5 - SUMMARY OF ANALYTICAL DATA: JP-4 (MRD-00-629)

Sample #:		2	3	1	2	3	-	2	3	_	2	3
Non-Volatile Aerosol (filter), mg/m³	118	82	43	0	0	0	0	0	0	0	0	0
Volatile Hydrocarbons (sorbent tube), mg/m ³	11337	11273	11436	1943	1886	1834	948	1018	901	621	713	722
Total Analytical Concentration, mg/m³	11455	11355	11479	1943	1886	1834	948	1018	901	621	713	722
Mean Analytical Concentration, mg/m³	_	11430 ± 66	9		1888 ± 55	5		956 ± 59			685 ± 56	
Nominal Concentration, mg/m³		33889			4000			1333			1111	
Median Particle Size (um)*		5.35**										
Geometric Standard Deviation (um)		2.21										
% less than or equal to 15 um		90.3		* Mass A	Acdian equ	* Mass Median equivalent aerodynamic size (50% size).	dynamic	size (50%	size).			
% less than or equal to 10 um		78.4				msonrecent actoopy in sompte for white particle size analysis	T N	d particles	size analy	Sis		
% less than or equal to 1 um		1.7										
			,	-		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					1 1 2 1 1	

TABLE 6 - SUMMARY OF ANALYTICAL DATA: JP-8 (MRD-00-630)

									i						
Sample #:		2	3	-	2	3	-	2	3	1	2	3	_	2	3
Non-Volatile Aerosol (Filter), mg/m³	1152	1244	1294	442	465	469	160	166	183	21	25	22	0	0	0
Volatile Hydrocarbons (sorbent tube), mg/m ³	2265	2386	2356	1350	1451	1335	806	945	806	622	869	654	700	744	089
Total Analytical Concentration, mg/m ³	3559	3630	3650	1792	1916	1804	1068	1111	1001	643	723	929	700	744	089
Mean Analytical Concentration, mg/m³		3613 ± 48	18		1837 ± 68	8		1090 ± 22	2		681 ± 40		7	708 ± 33	
Nominal Concentration, mg/m³		5333			3333			2000			1111			1222	
Median Particle Size (um)*								0.25						S.R. \$1.5. \$1.5.	
Geometric Standard Deviation (um)								3.89							
% less than or equal to 15 um	* Mass	Median e	* Mass Median equivalent aerodynamic size (50% size).	rodynami	c size (50	% size).		6.99							
% less than or equal to 10 um								7.66							
% less than or equal to 1 um								84.7							
												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

TABLE 7 - SUMMARY OF ANALYTICAL DATA : JP-8 + 100 (MRD-00-631)

Sample #:		2	3	1	2	3		2	3
Non-Volatile Aerosol (Filter), mg/m³	606	615	587	291	297	311	25	31	31
Volatile Hydrocarbons (sorbent tube), mg/m³	1759	1731	1771	1191	1220	1248	781	725	738
Total Analytical Concentration, mg/m ³	2365	2346	2358	1482	1517	1559	908	756	692
Mean Analytical Concentration, mg/m³		2356 ± 35	5		1519 ± 39	6		777 ± 26	
Nominal Concentration, mg/m³		4111			2667			1333	
Median Particle Size (um)*								1.27	
Geometric Standard Deviation (um)								2.00	
% less than or equal to 15 um	* Mass N	ledian equiv	* Mass Median equivalent aerodynamic size (50% šize).	mic size (50)% size).			86.98	
% less than or equal to 10 um								98.66	
% less than or equal to 1 um								36.47	

APPENDIX A: TABLE 1A- ANALYTICAL PROCEDURES AND DETAILED HYDROCARBON ANALYSES

METHOD:
SUBSTANCE(S)
DETECTION LIMIT:
MIN.DET.CONC.:
O.1 ppm
IHMC CLASS:
A/B

SAMPLING CONDITIONS:
SAMPLING DEVICE(S):
CATALOG NUMBER:
SAMPLE STABILITY (days):
SHIPMENT/STORAGE:
Dry Ice/Freezer

ANALYTICAL CONDITIONS:
DESORPTION SOLVENT:
Carbon Disulfide (CS2)

DESORPTION SOLVENT:
Carbon Disulfide (CSZ)
VOLUME (mLs)
1 (small tube)
2 (large tube)
TEMP:
TEMP:
Ambient
None
INSTRUCTIONS:
None
HP5890 (or equivalent)

COLUMN: TEMPERATURE PROGRAM: INJECTOR TEMP (C): SAMPLE SIZE (uL) DETECTOR

FLOWS:

35C (4 min) --> 200 C @ 5C/min

Flame Ionization (FID)

30M x 0.53 mm id CP-Sil 5 CB

FUEL - Hydrogen (H2) 30 (cc/min)
OXIDANT - Air 375 (cc/min)
CARRIER - Helium (He) or Nitrogen (N2) 5-10 (cc/min)

TABLE 1A- ANALYTICAL PROCEDURES AND DETAILED HYDROCARBON ANALYSES (CONT'D)

CHEMICAL/PHYSICAL PROPERTIES:

SUBSTANCE (& synonym)	DENSITY (gms/mL)	MOL. WT.	RETENTION TIME (min)
Isopentane	0.620	72.15	2.8
n-Pentane	0.626	72.15	3.3
2-Methylpentane	0.653	86.17	5.4
3-Methylpentane	0.664	86.17	5.9
n-Hexane	0.660	86.17	6.5
Methylcyclopentane	0.749	84.16	7.6
Benzene	0.880	78.11	8.6
Cyclohexane	0.778	84.16	8.9
3-Methylhexane	0.687	100.21	9.6
Iso-Octane	0.692	114.22	10.2
Heptane	0.684	100.20	10.6
Toluene	0.868	92.14	12.9
3-Methylheptane	0.706	114.22	13.7
n-Octane	0.703	114.22	14.7
Ethylbenzene	998.0	106.20	16.7
p&m-Xylene	0.863	106.20	17.0
o-Xylene	0.880	106.20	17.9
Nonane	0.722	106.20	18.5
Cumene	0.862	120.19	19.1
Propylbenzene	0.862	120.19	20.1
p&m-Ethyltoluene	0.863	120.19	20.5
1,3,5-Trimethylbenzene	0.876	120.19	20.7
o-Ethyltoluene	0.881	120.19	21.0
1,2,4-Trimethylbenzene	0.865	120.19	21.6
Decane	0.730	142.30	22.1
n-Undecane	0.740	156.31	25.3
Dodecane	0.749	170.34	28.4
Tetradecane	0.763	198.40	33.8
Hexadecane	0.773	226.45	38.7
Total Hydrocarbons as n-Hexane Equivalents (sum of all peaks minus the solvent	ane Equivalents (sum of all	peaks minus the solvent	1-40
Lamy			

STOCK STANDARD:

40µL each component / 100mLs CS2

NDARDS: 10/25 mL Serial Dilutions of Stock to cover concentration range of interest. TABLE 2A - INDIVIDUAL HYDROCARBON DATA: JP-4 (MRD-00-629) WORKING STANDARDS:

(all values are mg/m³)

2. Cronp Designation Estate			J				WI	
Sample Media	Sorbent Tube	Filter	Sorbent Tube	Filter	Sorbent Tube	Filter	Sorbent Tube	Filter
Sample Concentration	11273	82	1886	0	945	0	713	0
Total Concentration	3630	30	1886		1018	[8	713	
Individual Hydrocarbons;	· Vapota Ef.	Vaporate i ManAerosolise	* Vapor≪ (Aerosol	- Vajjor Aerosol	4 erosoli	Vapor	Aerosot
Isopentane	36	*	5	*	2	*	2	*
n-Pentane	81	*	11	*	5	*	4	*
2-Methylpentane	167	*	23	*	11	*	∞	*
3-Methylpentane	92	*	13	*	9	*	4	*
n-Hexane	347	*	48	*	23	*	15	*
Methylcyclopentane	307	*	42	*	20	*	14	*
Benzene	76	*	10	*	5	*	3	*
Cyclohexane	389	*	54	*	27	*	17	*
3-Methylhexane	321	*	45	*	22	*	15	*
Isooctane	415	*	55	*	37	*	25	*
n-Heptane	720	*	100	*	50	*	33	*
Toluene	373	*	50	*	35	*	18	*
3-Methylheptane	198	*	27	*	14	*	10	*
n-Octane	761	*	109	*	55	*	37	*
Ethylbenzene	112	*	16	*	6	*	9	*
p-m-Xylene	NA	n/a	n/a	n/a	n/a	n/a	n/a	n/a
o-Xylene	NA	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Xylenes	455	*	. 64	*	35	*	25	*
n-Nonane	263	*	41	*	21	*	15	*
Cumene	23	*	4	*	2	*	2	*
Propylbenzene	31	*	5	*	3	*	2	*
p-m Ethyltoluene	74	*	12	*	9	*	5	*
1,3,5-Trimethylbenzene	112	*	- 19	*	10	*	7	*
o-Ethyltoluene	37	*	7	*	3	*	3	*
1,2,4-Trimethylbenzene	112	*	19	*	10	*	7	*
n-Decane	169	1	33	*	17	*	11	*
n-Undecane	143	4	43	*	23	*	16	*
n-Dodecane	61	6	38	*	22	*	15	*
n-Tetradecane	2	7	7	*	11	*	7	*
n-Hexadecane	*	1	*	*	*	*	⊽	*
* helow the analytical limit of detection (0.1-0.2 mg/m2 based or	detection (0.1-0)	ma/m3 hased on	(amulo volume)	n/a - Not applicabl	(Not oil commission	caroline of for in di-	1 1 1	

^{*} below the analytical limit of detection (0.1-0.2 mg/m3 based on sample volume) n/a - Not applicable (Not all samples analyzed for individual xylenes)

TABLE 3A - INDIVIDUAL HYDROCARBON DATA: JP-8 (MRD-00-630) (all values are ${\rm mg/m^3})$

Froup Designation			11		III		N.			
Sample Media	Soi	Filter	Sorbent Tube	Filter	Sorbent Tube	Filter	Sorbent Tube	Filter	Sorbent Tube	Filter
Sample Concentration	2386	1244	1451	465	1018	166	869	25	713	*
Total Concentration	3613		1916		1111		723		713	
Individual Hydrocarbons;	Yaporgan.	*Aerosol	Vapor Tar	Aerosol	Vapor	Aerosoli	Vapor Aggosof	Aerosol	" Yapor	Aerosol
Isopentane	*	*	*	*		*	*	*	*	*
n-Pentane	*	*	*	*	5	*	*	*	*	*
2-Methylpentane	I	*	*	*	, 11	*	1	*	*	*
3-Methylpentane		*	*	*	9	*	*	*	*	*
n-Hexane	1	*	*	*	23	*	1	*	*	*
Methylcyclopentane	2	*	*	*	20	*	1	*	*	*
Benzene	-	*	*	*	5	*	*	*	*	*
Cyclohexane	2	*	*	*	27	*	1	*	*	*
3-Methylhexane	4	*	*	*	22	*	1	*	*	*
Isooctane	9	*	1	*	37	*	2	*	*	*
n-Heptane	6	*	2	*	50	*	3	*	1	*
Toluene	12	*	4	*	25	*	3	*	1	*
3-Methylheptane	10	*	4	*	14	*	2	*	1	*
n-Octane	35	*	18	*	55	*	6	*	3	*
Ethylbenzene	16	*	6	*	6	*	4	*	2	*
p-m-Xylene	n/a	n/a	16	n/a	n/a	n/a	n/a	n/a	n/a	n/a
o-Xylene	n/a	n/a	7	n/a	n/a	e/u	n/a	n/a	n/a	n/a
Xylenes	52	*	23	*	35	*	11	*	4	*
n-Nonane	71	2	39	*	21	*	17	*	10	*
Cumene	14	*	8	*	2	*	3	*	2	*
Propylbenzene	70	1	11	*	3	*	5	*	3	*
p-m Ethyltoluene	45	2	25	*	9	*	11	*	7	*
1,3,5-Trimethylbenzene	-	4	45	1	10	*	19	*	15	*
o-Ethyltoluene	37	2	21	*	3	*	6	*	7	*
1,2,4-Trimethylbenzene		4	39	1	10	*	17	*	14	*
n-Decane		13	77	3	17	0	32	*	31	*
n-Undecane	171	47	107	11	23	2	43	*	59	*
n-Dodecane	93	82	69	24	22	9	32	1	51	*
n-Tetradecane		87	11	2	11	17	12	3	15	0
n-Hexadecane	*	23	*	11	*	9	2	2	2	0
* 1 1 1 1 4.	, , , , , , , , , , , , , , , , , , , ,	, ,	1	-	.1					

^{*} below the analytical limit of detection (0.1-0.2 mg/m3 based on sample volume) n/a - Not applicable (Not all samples analyzed for individual xylenes)

TABLE 4A - INDIVIDUAL HYDROCARBON DATA: JP-8+100 (MRD-00-631) (all values are $\rm mg/m^3)$

		70.0				
Sorbent Tube		Filter	Sorbent Tube	Filter	Sorbent Tube	Filter
1771		615	1220	297	725	31
2386			1517		TTT	7
Vapor	1	Aerosola	Vapor	Averosolt	Yapor 🥞	🚅 🚈 Aerosol 🐔
*		1	*	*	2	*
*		*	*	*	2	*
2		*	1	*	3	*
1		*	*	*	2	*
3		*	1	*	3	*
3		*	1	*	3	*
1		*	1	*	1	*
3		*	1	*	3	*
9		*	2	*	4	*
6		*	4	*	9	*
14		*	9	*	6	*
17		*	8	*	6	*
11		*	7	*	9	*
38		*	23	*	18	*
. 16		*	10	*	7	*
44		*	n/a	n/a	n/a	n/a
12		*	n/a	n/a	n/a	n/a
56		*	37	23	24	*
57		*	39	*	23	#
11		*	7	*	4	*
15		*	10	*	5	*
33		*	23	*	13	*
46		*	30	0	16	*
37		*	25	0	14	*
		1	31	62	16	*
n-Decane 100		4	29	1	34	*
		19	68	4	42	*
77		40	61	10	30	-
		57	14	25	11	4
*		18	9	9	1	2

* below the analytical limit of detection (0.1-0.2 mg/m3 based on sample volume) n/a - Not applicable (Not all samples analyzed for individual xylenes)

TABLE 5A - INDIVIDUAL HYDROCARBON DATA: PARTICLE SIZE SAMPLES JP-4 (MRD-00-629)

11430 mg/m ³ 82 mg/m ³ 82 mg/m ³ 84.10 um 6.80 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	TP-4		.IP-8			JP-8+100	
82 mg/m³ 2.60 um 4.10 um 6.80 um 1	11430 mg/m³		1090 mg/m ³			777 mg/m ³	
2.60 um 4.10 um 6.80 um 1	82 mg/m ³		920 mg/m ³			29 mg/m ³	
1 32 81	4.10 um	0.30 um	0.84 um	1.50 um	0.54 um	1.50 um	2.6
* * * * * * * * * * * * * * * * * * *			78	92	0	63	Ĭ
* * * * * * * * * * * * * * * * * * *							
* * * * * * * * * * * * * * * * * * *		*	*	*	*	0	*
* * * * * * * * * * * * * * * * * * *		*	*	*	*	0	*
* * * * * * * * * * * * * * * * * * *		*	*	*	*	0	*
* * * * * * * * * * * * * * * * * * *		*	*	*	*	0	*
* * * * * * * * * * * * * * * * * * *		*	*	*	*	0	*
* * * * * * * * * * * * * * * * * * *		*	*	*	*	0	*
* * * * * * * * * * * * * * * * * * *		*	*	*	*	0	*
* * * * * * * * * * * * * * * * * * *		*	*	*	*	0	*
* * * * * * * * * * * * * * * * * * *		*	*	*	*	0	*
* * * * * * * * * * * * * * * * * * *		*	*	*	*	0	*
* * * * * * * * * * * * * * * * * * *		*	*	*	*	0	*
* * * * * * * * * * * * * * * * * * *		*	*	*	*	0	*
* * * * n/a	*	*	*	*	*	0	*
N/a N/a	*	*	*	*	*	0	*
n/a n/a n/a n/a n/a n/a n/a	*	*	*	*	*	0	*
n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
* * * * * * * * * *	n/a	n/a	n/a	n/a	n/a	n/a	n/a
* * * * * * * * *	*	*	*	*	*	0	*
* * * * * * * *	*	*	*	*	*	0	*
* * * * * * *	*	*	*	*	*	0	*
* * * * * *	*	*	*	*	*	0	*
* * * * *	*	*	*	*	*	0	*
* * * *	*	*	*	*	*	0	*
* * *	*	*	*	*	*	0	*
* *	*	*	*	*	*	0	*
*	*	*	0.087	*	*	0.16	*
	*	0.067	0.393	0.247	*	0	*
n-Dodecane * *	*	0.147	0.860	0.560	*	0.14	*
n-Tetradecane * *	*	0.793	3.20	2.427	*	0.37	*
n-Hexadecane * *	*	0.420	1.54	0.827	*	0.28	*

^{*} below the analytical limit of detection (0.1-0.2 mg/m3 based on sample volume) n/a - Not applicable (Not all samples analyzed for individual xylenes)

TABLE 6A - INDIVIDUAL HYDROCARBON DATA - NEAT TEST SUBSTANCES

	JP 4	JP 8	JP 8 + 100
	MRD-00-629	MRD-00-630	MRD-00-631
Hrawaari Hydrocarbonse	[Percent By Volume*	•
Isopentane	0.1437	ON	QN
n-Pentane	0.3237	ΩN	ΩN
2-Methylpentane	0.7302	QN	QN
3-Methylpentane	0.4139	QN	QN
n-Hexane	1.5403	0.0011	0.0023
Methylcyclopentane	1.3913	0.0006	0.0014
Вепzепе	0.3551	QN	QΝ
Cyclohexane	1.7803	0.0033	0:0030
3-Methylhexane	1.5065	0.0119	0.0078
Isooctane	2.4941	0.0256	0.0112
n-Heptane	3.3458	0.0481	0.0357
Toluene	2.0009	0.0721	0.0664
3-Methylheptane	0.9567	0.0604	0.0524
n-Octane	3.8056	0.2609	0.2506
Ethylbenzene	0.6458	0.1414	0.1322
P-M Xylene	3.3541	0.6610	0.6319
n-Nonane	1.5714	0.9103	0.8886
Cumene	0.1870	0.1756	0.1672
Propylbenzene	0.1830	0.2846	0.2698
p-m Ethyltoluene	0.5318	0.6921	0.6801
1,3,5-Trimethylbenzene	0.5948	1.0785	1.0677
o-Ethyltoluene	0.4586	0.8522	0.8416
1,2,4-Trimethylbenzene	0.8171	1.2355	1.2192
n-Decane	1.2687	2.8907	2.8641
n-Undecane	1.7350	5.5171	5.5065
n-Dodecane	1.8808	5.3191	5.3032
n-Tetradecane	1.4537	3.0523	3.0658
n-Hexadecane	0.3169	0.7690	0.7602
Total Analytes*	35.7868	24.0634	23.8289

^{*} percent of total test substance analyzed. Total analytes = sum of the 28 individual hydrocarbons; remainder is other unidentifed hydrocarbons. ND - None Detected

FIGURE 1A - CHROMATOGRAM FOR NEAT SUBSTANCE JP - 4

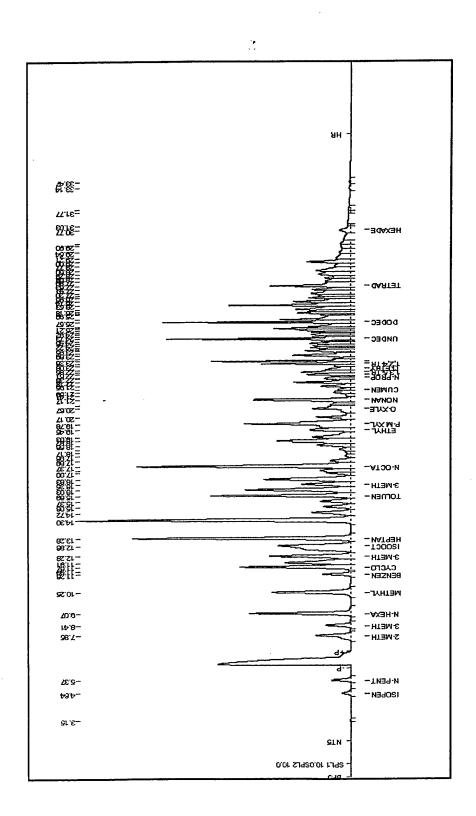


FIGURE 2A CHROMATOGRAM FOR NEAT SUBSTANCE JP - 8

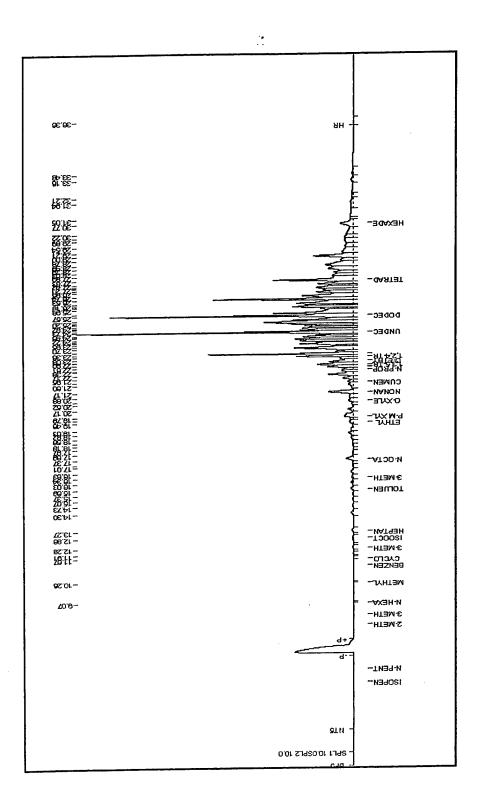


FIGURE 3A - CHROMATOGRAM FOR NEAT SUBSTANCE JP - 8 + 100

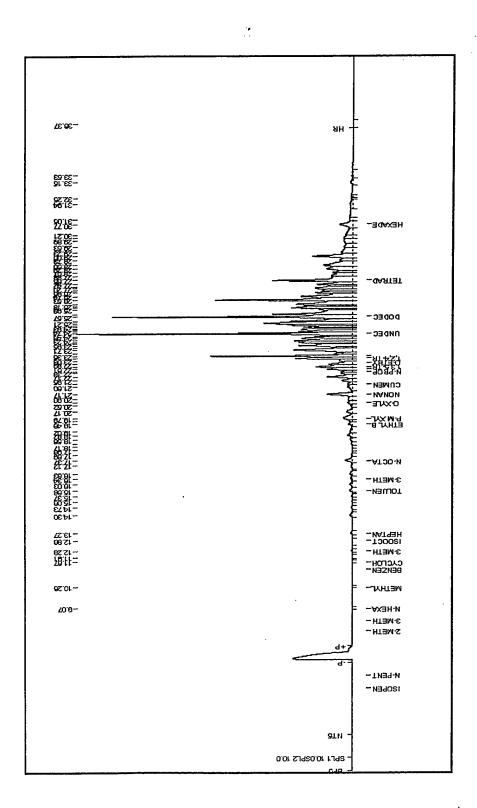
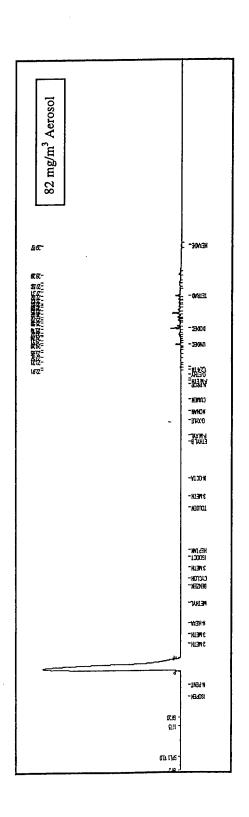



FIGURE 4A - COMPARISON OF CHROMATOGRAMS FOR SELECTED INDIVIDUAL AEROSOL AND VAPOR SAMPLES JP - 4 (Mean Concentration 11430 $\rm mg/m^3)$

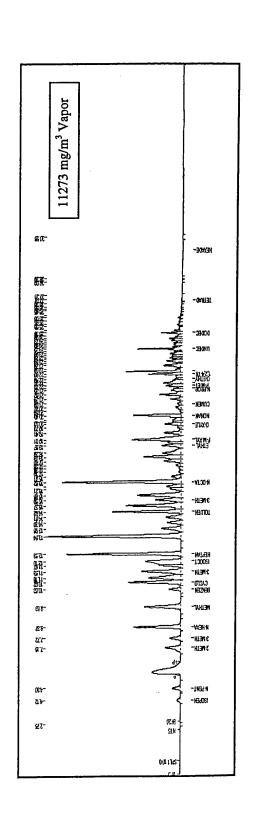
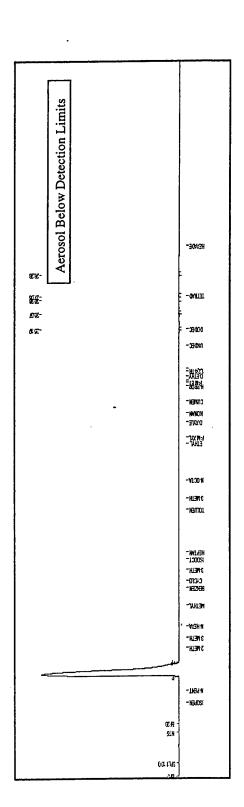



FIGURE 5A - COMPARISON OF CHROMATOGRAMS FOR SELECTED INDIVIDUAL AEROSOL AND VAPOR SAMPLES JP - 4 (Mean Concentration 1888 mg/m³)

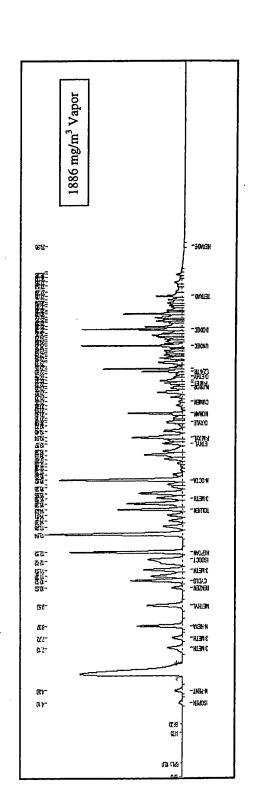
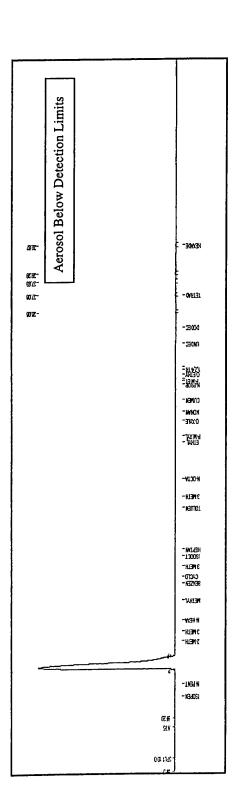



FIGURE 6A - COMPARISON OF CHROMATOGRAMS FOR SELECTED INDIVIDUAL AEROSOL AND VAPOR SAMPLES JP - 4 (Mean Concentration 956 mg/m³)

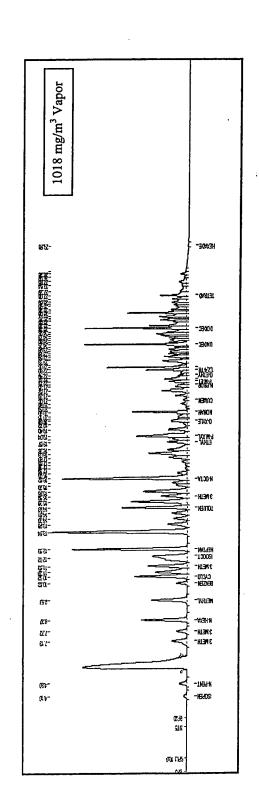
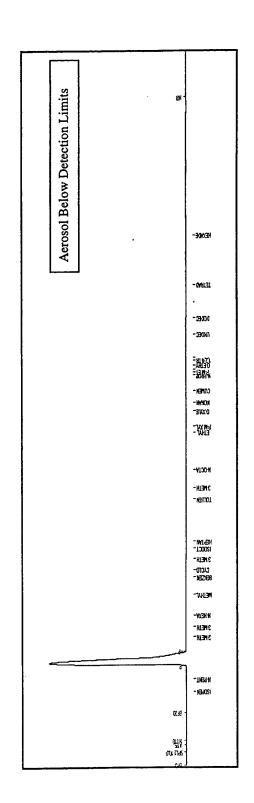
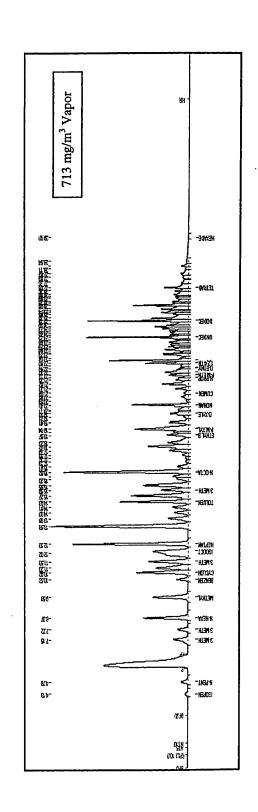
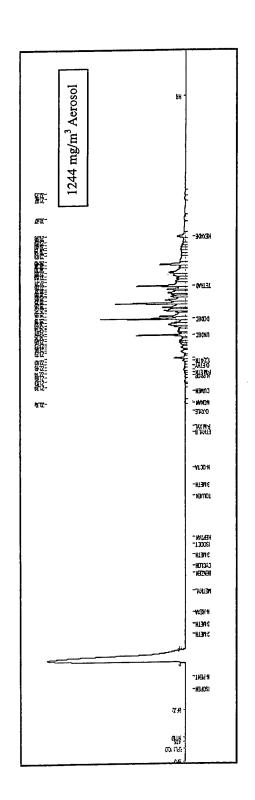
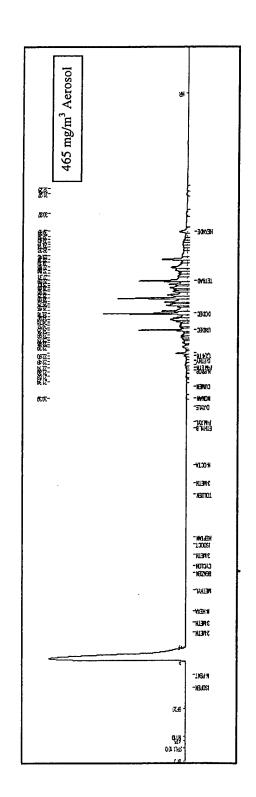
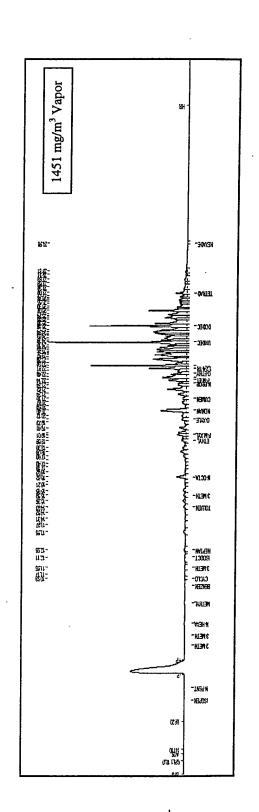



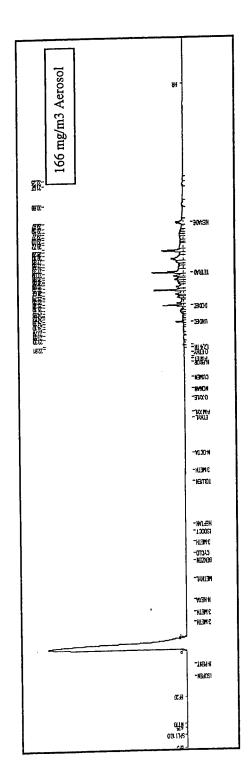
FIGURE 7A - COMPARISON OF CHROMATOGRAMS FOR SELECTED INDIVIDUAL AEROSOL AND VAPOR SAMPLES JP - 4 (Mean Concentration 685 mg/m³)


FIGURE 8A - COMPARISON OF CHROMATOGRAMS FOR SELECTED INDIVIDUAL AEROSOL AND VAPOR SAMPLES JP - 8 (Mean Concentration 3565 mg/m³)



Page 54 of 64


FIGURE 9A - COMPARISON OF CHROMATOGRAMS FOR SELECTED INDIVIDUAL AEROSOL AND VAPOR SAMPLES JP - 8 (Mean Concentration 1837 mg/m³)

Page 55 of 64

FIGURE 10A - COMPARISON OF CHROMATOGRAMS FOR SELECTED INDIVIDUAL AEROSOL AND VAPOR SAMPLES JP - 8 (Mean Concentration 1090 mg/m³)

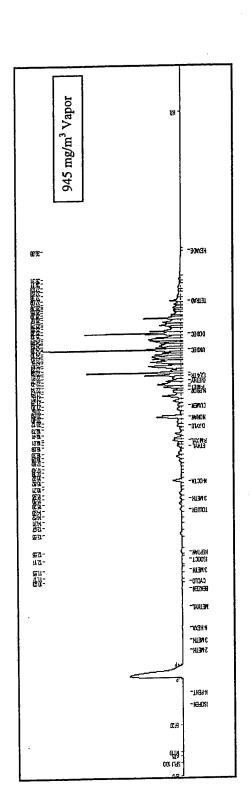


FIGURE 11A - COMPARISON OF CHROMATOGRAMS FOR SELECTED INDIVIDUAL AEROSOL AND VAPOR SAMPLES JP - 8 (Mean Concentration 681 mg/m³)

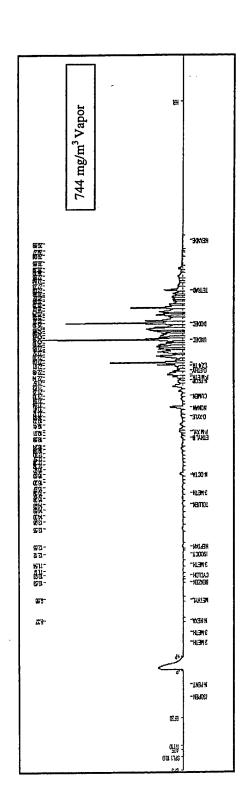
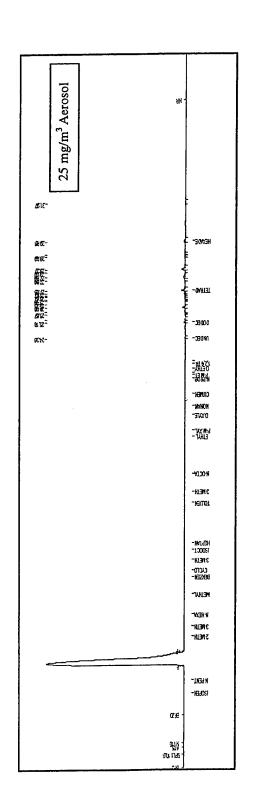



FIGURE 12A - COMPARISON OF CHROMATOGRAMS FOR SELECTED INDIVIDUAL AEROSOL AND VAPOR SAMPLES JP - 8 (Mean Concentration 681 mg/m³)

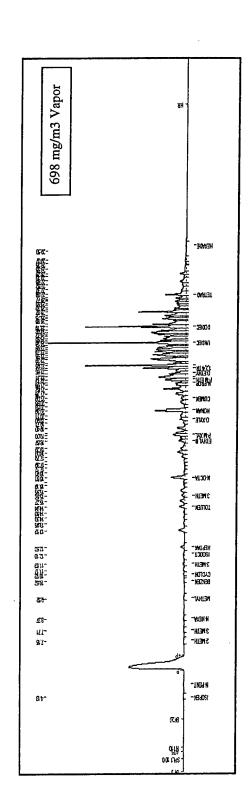
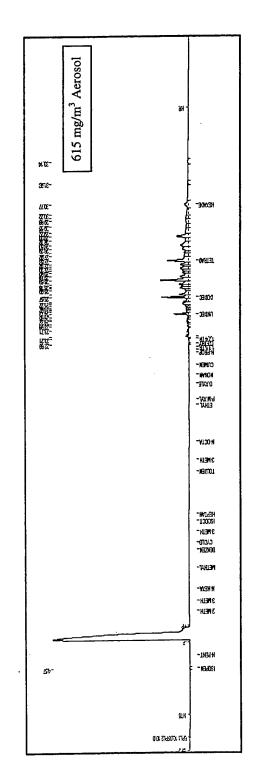
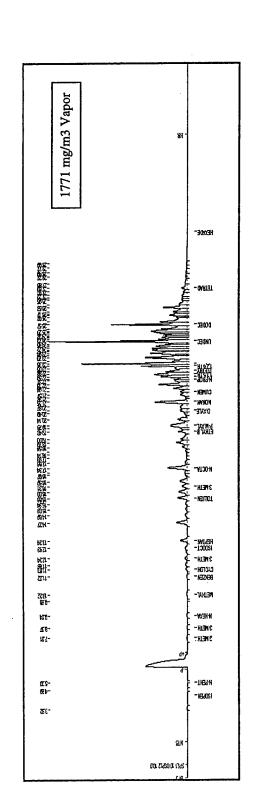
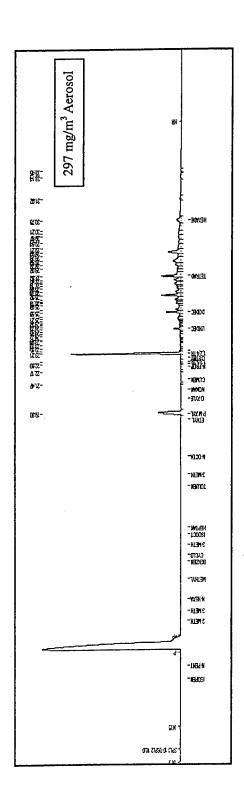
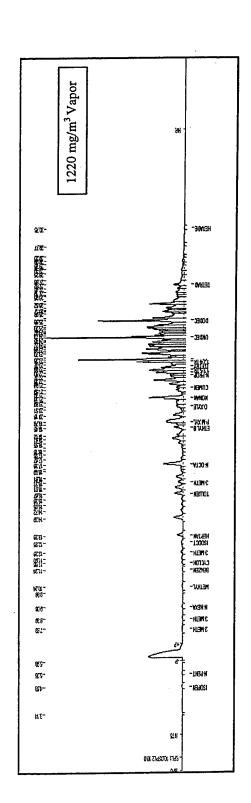
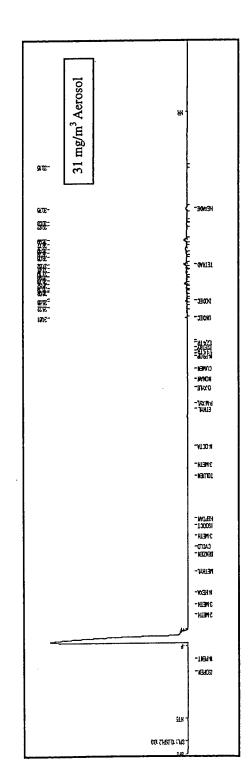
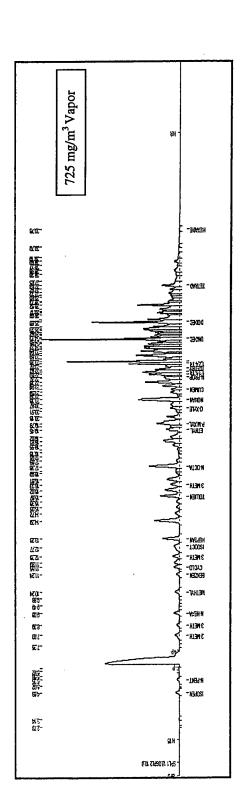



FIGURE 13A - COMPARISON OF CHROMATOGRAMS FOR SELECTED INDIVIDUAL AEROSOL AND VAPOR SAMPLES JP - 8 + 100 (Mean Concentration 2356 mg/m³)


FIGURE 14A - COMPARISON OF CHROMATOGRAMS FOR SELECTED INDIVIDUAL AEROSOL AND VAPOR SAMPLES JP - 8 + 100 (Mean Concentration 1519 mg/m³)



162951; SENSORY IRRITATION STUDY IN MICE MRD-00-629,630,631

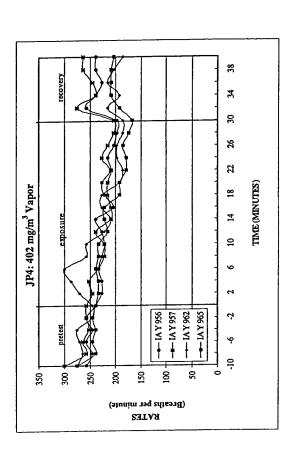
FIGURE 15A - COMPARISON OF CHROMATOGRAMS FOR SELECTED INDIVIDUAL AEROSOL AND VAPOR SAMPLES JP - 8 + 100 (Mean Concentration 777 mg/m³)

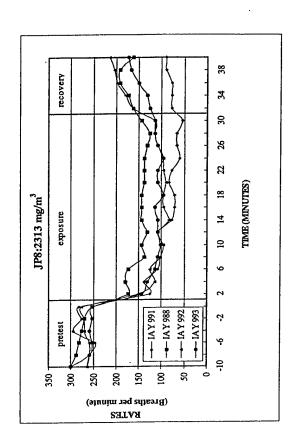
Page 61 of 64

APPENDIX B: TABLE 1B - SUMMARY OF ANALYTICAL DATA (ADDITIONAL EXPOSURES REPEATED DUE TO MISSING OR INCONSISTENT DATA)

Test Substance	JP 4 (JP 4 (MRD-00-629)	-629)	JP 8	JP 8 (MRD-00-630)	-630)
Sample #:	1	2	3	1	2	3
Non-Volatile Aerosol (Filter), mg/m³	0	0	0	1711	1611	1286
Volatile Hydrocarbons (Sorbent tube), mg/m³	257	0	949	1	1	2331
Total Analytical Concentration, mg/m³	257	0	949	1711	1611	3617
Mean Analytical Concentration, mg/m³	7	402 ± 491			2313 ± 1130	0
Nominal Concentration, mg/m³		1111			7222	

^{1 -} No Sample Taken


(ADDITIONAL EXPOSURES REPEATED DUE TO MISSING OR INCONSISTENT DATA)


EXPOSURE CONCENTRATION	7	ANIMAL NUMBER	BODY WEIGHT (g)	EXPOSURE RESPONSE (%)	RECOVERY RESPONSE (%)	RRITATION TYPE/ SEVERITY*	GROS (pretest)	GROSS OBSERVATIONS est)(inchamber) _ (post	TIONS (postdose)	
402 mg/m³	JP - 4	IAY956 IAY957 IAY962 IAY965 MEAN S.D.	28 29 29 29 6.5	-19 -24 -28 -23 -39	99 102 88 86 94 7.9	SENSORY/SLIGHT SENSORY/MODERATE SENSORY/MODERATE SENSORY/MODERATE	NOA NOA NOA	NOA NOA NOA A	NOA NOA NOA NOA	
2313 mg/m³	JP - 8	IAY991 IAY988 IAY992 IAY993 MEAN S.D.	30 28 30 28 12	.76 .51 .64 .57 .62	33 71 80 70 64	SENSORY/EXTREME SENSORY/EXTREME SENSORY/EXTREME SENSORY/EXTREME	NOA NOA NOA	NOA NOA NOA NOA	NOA NOA NOA NOA	

NOA - NO OBSERVABLE ABNORMALITIES

* Severity categorized as; slight = 12-19%; moderate = 20-49%; extreme = $\geq 50\%$.

(ADDITIONAL EXPOSURES REPEATED DUE TO MISSING OR INCONSISTENT DATA)

Page 64 of 64